Note: 실행을 위해 아래의 패키지들을 설치해주기 바랍니다.

!pip install tqdm numpy scikit-learn pyglet setuptools && \
!pip install gym asciinema pandas tabulate tornado==5.* PyBullet && \
!pip install git+https://github.com/pybox2d/pybox2d#egg=Box2D && \
!pip install git+https://github.com/mimoralea/gym-bandits#egg=gym-bandits && \
!pip install git+https://github.com/mimoralea/gym-walk#egg=gym-walk && \
!pip install git+https://github.com/mimoralea/gym-aima#egg=gym-aima && \
!pip install gym[atari]
!pip install torch torchvision
import warnings ; warnings.filterwarnings('ignore')
import os

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import numpy as np
from IPython.display import display
from collections import namedtuple, deque
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
from itertools import cycle, count
from textwrap import wrap

import matplotlib
import subprocess
import os.path
import tempfile
import random
import base64
import pprint
import glob
import time
import json
import sys
import gym
import io
import os
import gc
import platform

from gym import wrappers
from subprocess import check_output
from IPython.display import HTML

LEAVE_PRINT_EVERY_N_SECS = 60
ERASE_LINE = '\x1b[2K'
EPS = 1e-6
RESULTS_DIR = os.path.join('.', 'gym-results')
SEEDS = (12, 34, 56, 78, 90)

%matplotlib inline
plt.style.use('fivethirtyeight')
params = {
    'figure.figsize': (15, 8),
    'font.size': 24,
    'legend.fontsize': 20,
    'axes.titlesize': 28,
    'axes.labelsize': 24,
    'xtick.labelsize': 20,
    'ytick.labelsize': 20
}
pylab.rcParams.update(params)
np.set_printoptions(suppress=True)
torch.cuda.is_available()
True
def get_make_env_fn(**kargs):
    def make_env_fn(env_name, seed=None, render=None, record=False,
                    unwrapped=False, monitor_mode=None, 
                    inner_wrappers=None, outer_wrappers=None):
        mdir = tempfile.mkdtemp()
        env = None
        if render:
            try:
                env = gym.make(env_name, render=render)
            except:
                pass
        if env is None:
            env = gym.make(env_name)
        if seed is not None: env.seed(seed)
        env = env.unwrapped if unwrapped else env
        if inner_wrappers:
            for wrapper in inner_wrappers:
                env = wrapper(env)
        env = wrappers.Monitor(
            env, mdir, force=True, 
            mode=monitor_mode, 
            video_callable=lambda e_idx: record) if monitor_mode else env
        if outer_wrappers:
            for wrapper in outer_wrappers:
                env = wrapper(env)
        return env
    return make_env_fn, kargs
def get_videos_html(env_videos, title, max_n_videos=5):
    videos = np.array(env_videos)
    if len(videos) == 0:
        return
    
    n_videos = max(1, min(max_n_videos, len(videos)))
    idxs = np.linspace(0, len(videos) - 1, n_videos).astype(int) if n_videos > 1 else [-1,]
    videos = videos[idxs,...]

    strm = '<h2>{}</h2>'.format(title)
    for video_path, meta_path in videos:
        video = io.open(video_path, 'r+b').read()
        encoded = base64.b64encode(video)

        with open(meta_path) as data_file:    
            meta = json.load(data_file)

        html_tag = """
        <h3>{0}</h3>
        <video width="960" height="540" controls>
            <source src="data:video/mp4;base64,{1}" type="video/mp4" />
        </video>"""
        strm += html_tag.format('Episode ' + str(meta['episode_id']), encoded.decode('ascii'))
    return strm
platform.system()
'Windows'
def get_gif_html(env_videos, title, subtitle_eps=None, max_n_videos=4):
    videos = np.array(env_videos)
    if len(videos) == 0:
        return
    
    n_videos = max(1, min(max_n_videos, len(videos)))
    idxs = np.linspace(0, len(videos) - 1, n_videos).astype(int) if n_videos > 1 else [-1,]
    videos = videos[idxs,...]

    strm = '<h2>{}</h2>'.format(title)
    for video_path, meta_path in videos:
        basename = os.path.splitext(video_path)[0]
        gif_path = basename + '.gif'
        if not os.path.exists(gif_path):
            if platform.system() == 'Linux':
                ps = subprocess.Popen(
                    ('ffmpeg', 
                     '-i', video_path, 
                     '-r', '7',
                     '-f', 'image2pipe', 
                     '-vcodec', 'ppm',
                     '-crf', '20',
                     '-vf', 'scale=512:-1',
                     '-'), 
                    stdout=subprocess.PIPE,
                    universal_newlines=True)
                output = subprocess.check_output(
                    ('convert',
                     '-coalesce',
                     '-delay', '7',
                     '-loop', '0',
                     '-fuzz', '2%',
                     '+dither',
                     '-deconstruct',
                     '-layers', 'Optimize',
                     '-', gif_path), 
                    stdin=ps.stdout)
                ps.wait()
            else:
                ps = subprocess.Popen('ffmpeg -i {} -r 7 -f image2pipe \
                                      -vcodec ppm -crf 20 -vf scale=512:-1 - | \
                                      convert -coalesce -delay 7 -loop 0 -fuzz 2% \
                                      +dither -deconstruct -layers Optimize \
                                      - {}'.format(video_path, gif_path), 
                                      stdin=subprocess.PIPE, 
                                      shell=True)
                ps.wait()

        gif = io.open(gif_path, 'r+b').read()
        encoded = base64.b64encode(gif)
            
        with open(meta_path) as data_file:    
            meta = json.load(data_file)

        html_tag = """
        <h3>{0}</h3>
        <img src="data:image/gif;base64,{1}" />"""
        prefix = 'Trial ' if subtitle_eps is None else 'Episode '
        sufix = str(meta['episode_id'] if subtitle_eps is None \
                    else subtitle_eps[meta['episode_id']])
        strm += html_tag.format(prefix + sufix, encoded.decode('ascii'))
    return strm
class FCQ(nn.Module):
    def __init__(self, 
                 input_dim, 
                 output_dim, 
                 hidden_dims=(32,32), 
                 activation_fc=F.relu):
        super(FCQ, self).__init__()
        self.activation_fc = activation_fc

        self.input_layer = nn.Linear(input_dim, hidden_dims[0])

        self.hidden_layers = nn.ModuleList()
        for i in range(len(hidden_dims)-1):
            hidden_layer = nn.Linear(hidden_dims[i], hidden_dims[i+1])
            self.hidden_layers.append(hidden_layer)
        self.output_layer = nn.Linear(hidden_dims[-1], output_dim)

        device = "cpu"
        if torch.cuda.is_available():
            device = "cuda:0"
        self.device = torch.device(device)
        self.to(self.device)
        
    def _format(self, state):
        x = state
        if not isinstance(x, torch.Tensor):
            x = torch.tensor(x, 
                             device=self.device, 
                             dtype=torch.float32)
            x = x.unsqueeze(0)
        return x

    def forward(self, state):
        x = self._format(state)
        x = self.activation_fc(self.input_layer(x))
        for hidden_layer in self.hidden_layers:
            x = self.activation_fc(hidden_layer(x))
        x = self.output_layer(x)
        return x
    
    def numpy_float_to_device(self, variable):
        variable = torch.from_numpy(variable).float().to(self.device)
        return variable
    
    def load(self, experiences):
        states, actions, new_states, rewards, is_terminals = experiences
        states = torch.from_numpy(states).float().to(self.device)
        actions = torch.from_numpy(actions).long().to(self.device)
        new_states = torch.from_numpy(new_states).float().to(self.device)
        rewards = torch.from_numpy(rewards).float().to(self.device)
        is_terminals = torch.from_numpy(is_terminals).float().to(self.device)
        return states, actions, new_states, rewards, is_terminals
class GreedyStrategy():
    def __init__(self):
        self.exploratory_action_taken = False

    def select_action(self, model, state):
        with torch.no_grad():
            q_values = model(state).cpu().detach().data.numpy().squeeze()
            return np.argmax(q_values)
class EGreedyStrategy():
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self.exploratory_action_taken = None

    def select_action(self, model, state):
        self.exploratory_action_taken = False
        with torch.no_grad():
            q_values = model(state).cpu().detach().data.numpy().squeeze()

        if np.random.rand() > self.epsilon:
            action = np.argmax(q_values)
        else: 
            action = np.random.randint(len(q_values))

        self.exploratory_action_taken = action != np.argmax(q_values)
        return action
s = EGreedyStrategy()
plt.plot([s.epsilon for _ in range(50000)])
plt.title('Epsilon-Greedy epsilon value')
plt.xticks(rotation=45)
plt.show()
class EGreedyLinearStrategy():
    def __init__(self, init_epsilon=1.0, min_epsilon=0.1, decay_steps=20000):
        self.t = 0
        self.epsilon = init_epsilon
        self.init_epsilon = init_epsilon
        self.min_epsilon = min_epsilon
        self.decay_steps = decay_steps
        self.exploratory_action_taken = None
        
    def _epsilon_update(self):
        epsilon = 1 - self.t / self.decay_steps
        epsilon = (self.init_epsilon - self.min_epsilon) * epsilon + self.min_epsilon
        epsilon = np.clip(epsilon, self.min_epsilon, self.init_epsilon)
        self.t += 1
        return epsilon

    def select_action(self, model, state):
        self.exploratory_action_taken = False
        with torch.no_grad():
            q_values = model(state).cpu().detach().data.numpy().squeeze()

        if np.random.rand() > self.epsilon:
            action = np.argmax(q_values)
        else: 
            action = np.random.randint(len(q_values))

        self.epsilon = self._epsilon_update()
        self.exploratory_action_taken = action != np.argmax(q_values)
        return action
s = EGreedyLinearStrategy()
plt.plot([s._epsilon_update() for _ in range(50000)])
plt.title('Epsilon-Greedy linearly decaying epsilon value')
plt.xticks(rotation=45)
plt.show()
class EGreedyExpStrategy():
    def __init__(self, init_epsilon=1.0, min_epsilon=0.1, decay_steps=20000):
        self.epsilon = init_epsilon
        self.init_epsilon = init_epsilon
        self.decay_steps = decay_steps
        self.min_epsilon = min_epsilon
        self.epsilons = 0.01 / np.logspace(-2, 0, decay_steps, endpoint=False) - 0.01
        self.epsilons = self.epsilons * (init_epsilon - min_epsilon) + min_epsilon
        self.t = 0
        self.exploratory_action_taken = None

    def _epsilon_update(self):
        self.epsilon = self.min_epsilon if self.t >= self.decay_steps else self.epsilons[self.t]
        self.t += 1
        return self.epsilon

    def select_action(self, model, state):
        self.exploratory_action_taken = False
        with torch.no_grad():
            q_values = model(state).detach().cpu().data.numpy().squeeze()

        if np.random.rand() > self.epsilon:
            action = np.argmax(q_values)
        else:
            action = np.random.randint(len(q_values))

        self._epsilon_update()
        self.exploratory_action_taken = action != np.argmax(q_values)
        return action
s = EGreedyExpStrategy()
plt.plot([s._epsilon_update() for _ in range(50000)])
plt.title('Epsilon-Greedy exponentially decaying epsilon value')
plt.xticks(rotation=45)
plt.show()
class SoftMaxStrategy():
    def __init__(self, 
                 init_temp=1.0, 
                 min_temp=0.3, 
                 exploration_ratio=0.8, 
                 max_steps=25000):
        self.t = 0
        self.init_temp = init_temp
        self.exploration_ratio = exploration_ratio
        self.min_temp = min_temp
        self.max_steps = max_steps
        self.exploratory_action_taken = None
        
    def _update_temp(self):
        temp = 1 - self.t / (self.max_steps * self.exploration_ratio)
        temp = (self.init_temp - self.min_temp) * temp + self.min_temp
        temp = np.clip(temp, self.min_temp, self.init_temp)
        self.t += 1
        return temp

    def select_action(self, model, state):
        self.exploratory_action_taken = False
        temp = self._update_temp()

        with torch.no_grad():
            q_values = model(state).cpu().detach().data.numpy().squeeze()
            scaled_qs = q_values/temp
            norm_qs = scaled_qs - scaled_qs.max()            
            e = np.exp(norm_qs)
            probs = e / np.sum(e)
            assert np.isclose(probs.sum(), 1.0)

        action = np.random.choice(np.arange(len(probs)), size=1, p=probs)[0]
        self.exploratory_action_taken = action != np.argmax(q_values)
        return action
s = SoftMaxStrategy()
plt.plot([s._update_temp() for _ in range(50000)])
plt.title('SoftMax linearly decaying temperature value')
plt.xticks(rotation=45)
plt.show()
class ReplayBuffer():
    def __init__(self, 
                 max_size=10000, 
                 batch_size=64):
        self.ss_mem = np.empty(shape=(max_size), dtype=np.ndarray)
        self.as_mem = np.empty(shape=(max_size), dtype=np.ndarray)
        self.rs_mem = np.empty(shape=(max_size), dtype=np.ndarray)
        self.ps_mem = np.empty(shape=(max_size), dtype=np.ndarray)
        self.ds_mem = np.empty(shape=(max_size), dtype=np.ndarray)

        self.max_size = max_size
        self.batch_size = batch_size
        self._idx = 0
        self.size = 0
    
    def store(self, sample):
        s, a, r, p, d = sample
        self.ss_mem[self._idx] = s
        self.as_mem[self._idx] = a
        self.rs_mem[self._idx] = r
        self.ps_mem[self._idx] = p
        self.ds_mem[self._idx] = d
        
        self._idx += 1
        self._idx = self._idx % self.max_size

        self.size += 1
        self.size = min(self.size, self.max_size)

    def sample(self, batch_size=None):
        if batch_size == None:
            batch_size = self.batch_size

        idxs = np.random.choice(
            self.size, batch_size, replace=False)
        experiences = np.vstack(self.ss_mem[idxs]), \
                      np.vstack(self.as_mem[idxs]), \
                      np.vstack(self.rs_mem[idxs]), \
                      np.vstack(self.ps_mem[idxs]), \
                      np.vstack(self.ds_mem[idxs])
        return experiences

    def __len__(self):
        return self.size

DQN

class DQN():
    def __init__(self, 
                 replay_buffer_fn, 
                 value_model_fn, 
                 value_optimizer_fn, 
                 value_optimizer_lr,
                 training_strategy_fn,
                 evaluation_strategy_fn,
                 n_warmup_batches,
                 update_target_every_steps):
        self.replay_buffer_fn = replay_buffer_fn
        self.value_model_fn = value_model_fn
        self.value_optimizer_fn = value_optimizer_fn
        self.value_optimizer_lr = value_optimizer_lr
        self.training_strategy_fn = training_strategy_fn
        self.evaluation_strategy_fn = evaluation_strategy_fn
        self.n_warmup_batches = n_warmup_batches
        self.update_target_every_steps = update_target_every_steps

    def optimize_model(self, experiences):
        states, actions, rewards, next_states, is_terminals = experiences
        batch_size = len(is_terminals)
        
        max_a_q_sp = self.target_model(next_states).detach().max(1)[0].unsqueeze(1)
        target_q_sa = rewards + (self.gamma * max_a_q_sp * (1 - is_terminals))
        q_sa = self.online_model(states).gather(1, actions)

        td_error = q_sa - target_q_sa
        value_loss = td_error.pow(2).mul(0.5).mean()
        self.value_optimizer.zero_grad()
        value_loss.backward()
        self.value_optimizer.step()

    def interaction_step(self, state, env):
        action = self.training_strategy.select_action(self.online_model, state)
        new_state, reward, is_terminal, info = env.step(action)
        is_truncated = 'TimeLimit.truncated' in info and info['TimeLimit.truncated']
        is_failure = is_terminal and not is_truncated
        experience = (state, action, reward, new_state, float(is_failure))

        self.replay_buffer.store(experience)
        self.episode_reward[-1] += reward
        self.episode_timestep[-1] += 1
        self.episode_exploration[-1] += int(self.training_strategy.exploratory_action_taken)
        return new_state, is_terminal
    
    def update_network(self):
        for target, online in zip(self.target_model.parameters(), 
                                  self.online_model.parameters()):
            target.data.copy_(online.data)

    def train(self, make_env_fn, make_env_kargs, seed, gamma, 
              max_minutes, max_episodes, goal_mean_100_reward):
        training_start, last_debug_time = time.time(), float('-inf')

        self.checkpoint_dir = tempfile.mkdtemp()
        self.make_env_fn = make_env_fn
        self.make_env_kargs = make_env_kargs
        self.seed = seed
        self.gamma = gamma
        
        env = self.make_env_fn(**self.make_env_kargs, seed=self.seed)
        torch.manual_seed(self.seed) ; np.random.seed(self.seed) ; random.seed(self.seed)
    
        nS, nA = env.observation_space.shape[0], env.action_space.n
        self.episode_timestep = []
        self.episode_reward = []
        self.episode_seconds = []
        self.evaluation_scores = []        
        self.episode_exploration = []
        
        self.target_model = self.value_model_fn(nS, nA)
        self.online_model = self.value_model_fn(nS, nA)
        self.update_network()

        self.value_optimizer = self.value_optimizer_fn(self.online_model, 
                                                       self.value_optimizer_lr)

        self.replay_buffer = self.replay_buffer_fn()
        self.training_strategy = training_strategy_fn()
        self.evaluation_strategy = evaluation_strategy_fn() 
                    
        result = np.empty((max_episodes, 5))
        result[:] = np.nan
        training_time = 0
        for episode in range(1, max_episodes + 1):
            episode_start = time.time()
            
            state, is_terminal = env.reset(), False
            self.episode_reward.append(0.0)
            self.episode_timestep.append(0.0)
            self.episode_exploration.append(0.0)

            for step in count():
                state, is_terminal = self.interaction_step(state, env)
                
                min_samples = self.replay_buffer.batch_size * self.n_warmup_batches
                if len(self.replay_buffer) > min_samples:
                    experiences = self.replay_buffer.sample()
                    experiences = self.online_model.load(experiences)
                    self.optimize_model(experiences)
                
                if np.sum(self.episode_timestep) % self.update_target_every_steps == 0:
                    self.update_network()
                
                if is_terminal:
                    gc.collect()
                    break
            
            # stats
            episode_elapsed = time.time() - episode_start
            self.episode_seconds.append(episode_elapsed)
            training_time += episode_elapsed
            evaluation_score, _ = self.evaluate(self.online_model, env)
            self.save_checkpoint(episode-1, self.online_model)
            
            total_step = int(np.sum(self.episode_timestep))
            self.evaluation_scores.append(evaluation_score)
            
            mean_10_reward = np.mean(self.episode_reward[-10:])
            std_10_reward = np.std(self.episode_reward[-10:])
            mean_100_reward = np.mean(self.episode_reward[-100:])
            std_100_reward = np.std(self.episode_reward[-100:])
            mean_100_eval_score = np.mean(self.evaluation_scores[-100:])
            std_100_eval_score = np.std(self.evaluation_scores[-100:])
            lst_100_exp_rat = np.array(
                self.episode_exploration[-100:])/np.array(self.episode_timestep[-100:])
            mean_100_exp_rat = np.mean(lst_100_exp_rat)
            std_100_exp_rat = np.std(lst_100_exp_rat)
            
            wallclock_elapsed = time.time() - training_start
            result[episode-1] = total_step, mean_100_reward, \
                mean_100_eval_score, training_time, wallclock_elapsed
            
            reached_debug_time = time.time() - last_debug_time >= LEAVE_PRINT_EVERY_N_SECS
            reached_max_minutes = wallclock_elapsed >= max_minutes * 60
            reached_max_episodes = episode >= max_episodes
            reached_goal_mean_reward = mean_100_eval_score >= goal_mean_100_reward
            training_is_over = reached_max_minutes or \
                               reached_max_episodes or \
                               reached_goal_mean_reward

            elapsed_str = time.strftime("%H:%M:%S", time.gmtime(time.time() - training_start))
            debug_message = 'el {}, ep {:04}, ts {:06}, '
            debug_message += 'ar 10 {:05.1f}\u00B1{:05.1f}, '
            debug_message += '100 {:05.1f}\u00B1{:05.1f}, '
            debug_message += 'ex 100 {:02.1f}\u00B1{:02.1f}, '
            debug_message += 'ev {:05.1f}\u00B1{:05.1f}'
            debug_message = debug_message.format(
                elapsed_str, episode-1, total_step, mean_10_reward, std_10_reward, 
                mean_100_reward, std_100_reward, mean_100_exp_rat, std_100_exp_rat,
                mean_100_eval_score, std_100_eval_score)
            print(debug_message, end='\r', flush=True)
            if reached_debug_time or training_is_over:
                print(ERASE_LINE + debug_message, flush=True)
                last_debug_time = time.time()
            if training_is_over:
                if reached_max_minutes: print(u'--> reached_max_minutes \u2715')
                if reached_max_episodes: print(u'--> reached_max_episodes \u2715')
                if reached_goal_mean_reward: print(u'--> reached_goal_mean_reward \u2713')
                break
                
        final_eval_score, score_std = self.evaluate(self.online_model, env, n_episodes=100)
        wallclock_time = time.time() - training_start
        print('Training complete.')
        print('Final evaluation score {:.2f}\u00B1{:.2f} in {:.2f}s training time,'
              ' {:.2f}s wall-clock time.\n'.format(
                  final_eval_score, score_std, training_time, wallclock_time))
        env.close() ; del env
        self.get_cleaned_checkpoints()
        return result, final_eval_score, training_time, wallclock_time
    
    def evaluate(self, eval_policy_model, eval_env, n_episodes=1):
        rs = []
        for _ in range(n_episodes):
            s, d = eval_env.reset(), False
            rs.append(0)
            for _ in count():
                a = self.evaluation_strategy.select_action(eval_policy_model, s)
                s, r, d, _ = eval_env.step(a)
                rs[-1] += r
                if d: break
        return np.mean(rs), np.std(rs)

    def get_cleaned_checkpoints(self, n_checkpoints=5):
        try: 
            return self.checkpoint_paths
        except AttributeError:
            self.checkpoint_paths = {}

        paths = glob.glob(os.path.join(self.checkpoint_dir, '*.tar'))
        paths_dic = {int(path.split('.')[-2]):path for path in paths}
        last_ep = max(paths_dic.keys())
        # checkpoint_idxs = np.geomspace(1, last_ep+1, n_checkpoints, endpoint=True, dtype=np.int)-1
        checkpoint_idxs = np.linspace(1, last_ep+1, n_checkpoints, endpoint=True, dtype=np.int)-1

        for idx, path in paths_dic.items():
            if idx in checkpoint_idxs:
                self.checkpoint_paths[idx] = path
            else:
                os.unlink(path)

        return self.checkpoint_paths

    def demo_last(self, title='Fully-trained {} Agent', n_episodes=3, max_n_videos=3):
        env = self.make_env_fn(**self.make_env_kargs, monitor_mode='evaluation', render=True, record=True)

        checkpoint_paths = self.get_cleaned_checkpoints()
        last_ep = max(checkpoint_paths.keys())
        self.online_model.load_state_dict(torch.load(checkpoint_paths[last_ep]))

        self.evaluate(self.online_model, env, n_episodes=n_episodes)
        env.close()
        data = get_gif_html(env_videos=env.videos, 
                            title=title.format(self.__class__.__name__),
                            max_n_videos=max_n_videos)
        del env
        return HTML(data=data)

    def demo_progression(self, title='{} Agent progression', max_n_videos=5):
        env = self.make_env_fn(**self.make_env_kargs, monitor_mode='evaluation', render=True, record=True)

        checkpoint_paths = self.get_cleaned_checkpoints()
        for i in sorted(checkpoint_paths.keys()):
            self.online_model.load_state_dict(torch.load(checkpoint_paths[i]))
            self.evaluate(self.online_model, env, n_episodes=1)

        env.close()
        data = get_gif_html(env_videos=env.videos, 
                            title=title.format(self.__class__.__name__),
                            subtitle_eps=sorted(checkpoint_paths.keys()),
                            max_n_videos=max_n_videos)
        del env
        return HTML(data=data)

    def save_checkpoint(self, episode_idx, model):
        torch.save(model.state_dict(), 
                   os.path.join(self.checkpoint_dir, 'model.{}.tar'.format(episode_idx)))
dqn_results = []
best_agent, best_eval_score = None, float('-inf')
for seed in SEEDS:
    environment_settings = {
        'env_name': 'CartPole-v1',
        'gamma': 1.00,
        'max_minutes': 20,
        'max_episodes': 10000,
        'goal_mean_100_reward': 475
    }
    
    value_model_fn = lambda nS, nA: FCQ(nS, nA, hidden_dims=(512,128))
    value_optimizer_fn = lambda net, lr: optim.RMSprop(net.parameters(), lr=lr)
    value_optimizer_lr = 0.0005

    # training_strategy_fn = lambda: EGreedyStrategy(epsilon=0.5)
    # training_strategy_fn = lambda: EGreedyLinearStrategy(init_epsilon=1.0,
    #                                                      min_epsilon=0.3, 
    #                                                      max_steps=20000)
    # training_strategy_fn = lambda: SoftMaxStrategy(init_temp=1.0, 
    #                                                min_temp=0.1, 
    #                                                exploration_ratio=0.8, 
    #                                                max_steps=20000)
    training_strategy_fn = lambda: EGreedyExpStrategy(init_epsilon=1.0,  
                                                      min_epsilon=0.3, 
                                                      decay_steps=20000)
    evaluation_strategy_fn = lambda: GreedyStrategy()

    replay_buffer_fn = lambda: ReplayBuffer(max_size=50000, batch_size=64)
    n_warmup_batches = 5
    update_target_every_steps = 10

    env_name, gamma, max_minutes, \
    max_episodes, goal_mean_100_reward = environment_settings.values()
    agent = DQN(replay_buffer_fn,
                value_model_fn,
                value_optimizer_fn,
                value_optimizer_lr,
                training_strategy_fn,
                evaluation_strategy_fn,
                n_warmup_batches,
                update_target_every_steps)

    make_env_fn, make_env_kargs = get_make_env_fn(env_name=env_name)
    result, final_eval_score, training_time, wallclock_time = agent.train(
        make_env_fn, make_env_kargs, seed, gamma, max_minutes, max_episodes, goal_mean_100_reward)
    dqn_results.append(result)
    if final_eval_score > best_eval_score:
        best_eval_score = final_eval_score
        best_agent = agent
dqn_results = np.array(dqn_results)
el 00:00:01, ep 0000, ts 000016, ar 10 016.0±000.0, 100 016.0±000.0, ex 100 0.4±0.0, ev 019.0±000.0
el 00:01:02, ep 0167, ts 016307, ar 10 244.5±071.2, 100 139.5±083.8, ex 100 0.3±0.1, ev 298.9±099.1
el 00:02:03, ep 0209, ts 034129, ar 10 454.2±106.8, 100 281.0±159.7, ex 100 0.2±0.1, ev 384.8±117.8
el 00:03:03, ep 0245, ts 050529, ar 10 440.8±103.7, 100 388.3±147.7, ex 100 0.2±0.0, ev 458.1±085.3
el 00:03:24, ep 0257, ts 055793, ar 10 458.9±083.1, 100 419.3±130.8, ex 100 0.2±0.0, ev 477.7±068.2
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 500.00±0.00 in 175.96s training time, 220.58s wall-clock time.

el 00:00:00, ep 0000, ts 000034, ar 10 034.0±000.0, 100 034.0±000.0, ex 100 0.6±0.0, ev 008.0±000.0
el 00:01:00, ep 0161, ts 016773, ar 10 288.4±130.7, 100 149.3±118.1, ex 100 0.3±0.1, ev 290.7±113.8
el 00:02:01, ep 0212, ts 034365, ar 10 458.2±085.1, 100 286.4±135.4, ex 100 0.2±0.1, ev 384.4±119.0
el 00:03:03, ep 0248, ts 051154, ar 10 500.0±000.0, 100 381.8±131.7, ex 100 0.2±0.0, ev 449.1±090.9
el 00:03:35, ep 0267, ts 059611, ar 10 430.9±148.7, 100 410.9±127.3, ex 100 0.2±0.0, ev 475.5±064.4
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 500.00±0.00 in 187.33s training time, 231.06s wall-clock time.

el 00:00:00, ep 0000, ts 000012, ar 10 012.0±000.0, 100 012.0±000.0, ex 100 0.6±0.0, ev 010.0±000.0
el 00:01:00, ep 0161, ts 016947, ar 10 241.3±090.4, 100 151.3±104.1, ex 100 0.3±0.1, ev 284.7±092.7
el 00:02:00, ep 0211, ts 034385, ar 10 421.6±156.1, 100 285.7±140.3, ex 100 0.2±0.0, ev 365.2±120.5
el 00:03:02, ep 0247, ts 051165, ar 10 468.9±093.3, 100 373.4±150.3, ex 100 0.2±0.0, ev 432.6±111.0
el 00:03:40, ep 0268, ts 060955, ar 10 474.5±071.6, 100 423.5±128.1, ex 100 0.2±0.0, ev 478.3±064.0
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 500.00±0.00 in 192.58s training time, 236.86s wall-clock time.

el 00:00:00, ep 0000, ts 000012, ar 10 012.0±000.0, 100 012.0±000.0, ex 100 0.6±0.0, ev 012.0±000.0
el 00:01:01, ep 0179, ts 016714, ar 10 329.5±139.7, 100 142.5±105.5, ex 100 0.3±0.1, ev 250.7±097.5
el 00:02:02, ep 0219, ts 034188, ar 10 464.7±105.9, 100 283.3±173.5, ex 100 0.2±0.1, ev 368.3±131.1
el 00:03:04, ep 0254, ts 050476, ar 10 426.7±133.5, 100 398.1±149.5, ex 100 0.2±0.0, ev 441.3±098.8
el 00:03:36, ep 0271, ts 058449, ar 10 470.9±087.3, 100 446.0±113.1, ex 100 0.2±0.0, ev 475.3±066.1
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 488.33±51.75 in 190.46s training time, 232.66s wall-clock time.

el 00:00:00, ep 0000, ts 000044, ar 10 044.0±000.0, 100 044.0±000.0, ex 100 0.6±0.0, ev 009.0±000.0
el 00:01:00, ep 0158, ts 016269, ar 10 298.9±075.9, 100 148.5±117.7, ex 100 0.3±0.1, ev 301.5±114.7
el 00:02:00, ep 0218, ts 033489, ar 10 401.9±114.2, 100 271.9±115.6, ex 100 0.2±0.0, ev 346.2±101.7
el 00:03:00, ep 0293, ts 048735, ar 10 127.4±034.9, 100 234.6±150.4, ex 100 0.2±0.0, ev 287.6±157.1
el 00:04:01, ep 0383, ts 063261, ar 10 192.7±172.1, 100 158.0±126.9, ex 100 0.2±0.1, ev 213.0±157.0
el 00:05:02, ep 0495, ts 077925, ar 10 465.6±103.2, 100 103.8±163.3, ex 100 0.2±0.1, ev 150.3±202.5
el 00:06:03, ep 0530, ts 093857, ar 10 481.7±054.9, 100 237.5±225.7, ex 100 0.2±0.1, ev 284.0±234.1
el 00:07:04, ep 0565, ts 109795, ar 10 465.5±091.5, 100 386.5±184.9, ex 100 0.2±0.0, ev 448.1±145.2
el 00:07:15, ep 0571, ts 112795, ar 10 500.0±000.0, 100 414.6±163.3, ex 100 0.2±0.0, ev 475.4±102.0
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 499.98±0.14 in 384.84s training time, 451.81s wall-clock time.

best_agent.demo_progression()

DQN Agent progression

Episode 0

Episode 64

Episode 128

Episode 192

Episode 257

best_agent.demo_last()

Fully-trained DQN Agent

Trial 0

Trial 1

Trial 2

nfq_root_dir = os.path.join(RESULTS_DIR, 'nfq')
nfq_x = np.load(os.path.join(nfq_root_dir, 'x.npy'))

nfq_max_r = np.load(os.path.join(nfq_root_dir, 'max_r.npy'))
nfq_min_r = np.load(os.path.join(nfq_root_dir, 'min_r.npy'))
nfq_mean_r = np.load(os.path.join(nfq_root_dir, 'mean_r.npy'))

nfq_max_s = np.load(os.path.join(nfq_root_dir, 'max_s.npy'))
nfq_min_s = np.load(os.path.join(nfq_root_dir, 'min_s.npy'))
nfq_mean_s = np.load(os.path.join(nfq_root_dir, 'mean_s.npy'))

nfq_max_t = np.load(os.path.join(nfq_root_dir, 'max_t.npy'))
nfq_min_t = np.load(os.path.join(nfq_root_dir, 'min_t.npy'))
nfq_mean_t = np.load(os.path.join(nfq_root_dir, 'mean_t.npy'))

nfq_max_sec = np.load(os.path.join(nfq_root_dir, 'max_sec.npy'))
nfq_min_sec = np.load(os.path.join(nfq_root_dir, 'min_sec.npy'))
nfq_mean_sec = np.load(os.path.join(nfq_root_dir, 'mean_sec.npy'))

nfq_max_rt = np.load(os.path.join(nfq_root_dir, 'max_rt.npy'))
nfq_min_rt = np.load(os.path.join(nfq_root_dir, 'min_rt.npy'))
nfq_mean_rt = np.load(os.path.join(nfq_root_dir, 'mean_rt.npy'))
dqn_max_t, dqn_max_r, dqn_max_s, \
    dqn_max_sec, dqn_max_rt = np.max(dqn_results, axis=0).T
dqn_min_t, dqn_min_r, dqn_min_s, \
    dqn_min_sec, dqn_min_rt = np.min(dqn_results, axis=0).T
dqn_mean_t, dqn_mean_r, dqn_mean_s, \
    dqn_mean_sec, dqn_mean_rt = np.mean(dqn_results, axis=0).T
dqn_x = np.arange(np.max((len(dqn_mean_s), len(nfq_mean_s))))
fig, axs = plt.subplots(5, 1, figsize=(15,30), sharey=False, sharex=True)

# NFQ
axs[0].plot(nfq_max_r, 'y', linewidth=1)
axs[0].plot(nfq_min_r, 'y', linewidth=1)
axs[0].plot(nfq_mean_r, 'y', label='NFQ', linewidth=2)
axs[0].fill_between(nfq_x, nfq_min_r, nfq_max_r, facecolor='y', alpha=0.3)

axs[1].plot(nfq_max_s, 'y', linewidth=1)
axs[1].plot(nfq_min_s, 'y', linewidth=1)
axs[1].plot(nfq_mean_s, 'y', label='NFQ', linewidth=2)
axs[1].fill_between(nfq_x, nfq_min_s, nfq_max_s, facecolor='y', alpha=0.3)

axs[2].plot(nfq_max_t, 'y', linewidth=1)
axs[2].plot(nfq_min_t, 'y', linewidth=1)
axs[2].plot(nfq_mean_t, 'y', label='NFQ', linewidth=2)
axs[2].fill_between(nfq_x, nfq_min_t, nfq_max_t, facecolor='y', alpha=0.3)

axs[3].plot(nfq_max_sec, 'y', linewidth=1)
axs[3].plot(nfq_min_sec, 'y', linewidth=1)
axs[3].plot(nfq_mean_sec, 'y', label='NFQ', linewidth=2)
axs[3].fill_between(nfq_x, nfq_min_sec, nfq_max_sec, facecolor='y', alpha=0.3)

axs[4].plot(nfq_max_rt, 'y', linewidth=1)
axs[4].plot(nfq_min_rt, 'y', linewidth=1)
axs[4].plot(nfq_mean_rt, 'y', label='NFQ', linewidth=2)
axs[4].fill_between(nfq_x, nfq_min_rt, nfq_max_rt, facecolor='y', alpha=0.3)

# DQN
axs[0].plot(dqn_max_r, 'b', linewidth=1)
axs[0].plot(dqn_min_r, 'b', linewidth=1)
axs[0].plot(dqn_mean_r, 'b--', label='DQN', linewidth=2)
axs[0].fill_between(dqn_x, dqn_min_r, dqn_max_r, facecolor='b', alpha=0.3)

axs[1].plot(dqn_max_s, 'b', linewidth=1)
axs[1].plot(dqn_min_s, 'b', linewidth=1)
axs[1].plot(dqn_mean_s, 'b--', label='DQN', linewidth=2)
axs[1].fill_between(dqn_x, dqn_min_s, dqn_max_s, facecolor='b', alpha=0.3)

axs[2].plot(dqn_max_t, 'b', linewidth=1)
axs[2].plot(dqn_min_t, 'b', linewidth=1)
axs[2].plot(dqn_mean_t, 'b--', label='DQN', linewidth=2)
axs[2].fill_between(dqn_x, dqn_min_t, dqn_max_t, facecolor='b', alpha=0.3)

axs[3].plot(dqn_max_sec, 'b', linewidth=1)
axs[3].plot(dqn_min_sec, 'b', linewidth=1)
axs[3].plot(dqn_mean_sec, 'b--', label='DQN', linewidth=2)
axs[3].fill_between(dqn_x, dqn_min_sec, dqn_max_sec, facecolor='b', alpha=0.3)

axs[4].plot(dqn_max_rt, 'b', linewidth=1)
axs[4].plot(dqn_min_rt, 'b', linewidth=1)
axs[4].plot(dqn_mean_rt, 'b--', label='DQN', linewidth=2)
axs[4].fill_between(dqn_x, dqn_min_rt, dqn_max_rt, facecolor='b', alpha=0.3)

# ALL
axs[0].set_title('Moving Avg Reward (Training)')
axs[1].set_title('Moving Avg Reward (Evaluation)')
axs[2].set_title('Total Steps')
axs[3].set_title('Training Time')
axs[4].set_title('Wall-clock Time')
plt.xlabel('Episodes')
axs[0].legend(loc='upper left')
plt.show()
dqn_root_dir = os.path.join(RESULTS_DIR, 'dqn')
not os.path.exists(dqn_root_dir) and os.makedirs(dqn_root_dir)

np.save(os.path.join(dqn_root_dir, 'x'), dqn_x)

np.save(os.path.join(dqn_root_dir, 'max_r'), dqn_max_r)
np.save(os.path.join(dqn_root_dir, 'min_r'), dqn_min_r)
np.save(os.path.join(dqn_root_dir, 'mean_r'), dqn_mean_r)

np.save(os.path.join(dqn_root_dir, 'max_s'), dqn_max_s)
np.save(os.path.join(dqn_root_dir, 'min_s'), dqn_min_s )
np.save(os.path.join(dqn_root_dir, 'mean_s'), dqn_mean_s)

np.save(os.path.join(dqn_root_dir, 'max_t'), dqn_max_t)
np.save(os.path.join(dqn_root_dir, 'min_t'), dqn_min_t)
np.save(os.path.join(dqn_root_dir, 'mean_t'), dqn_mean_t)

np.save(os.path.join(dqn_root_dir, 'max_sec'), dqn_max_sec)
np.save(os.path.join(dqn_root_dir, 'min_sec'), dqn_min_sec)
np.save(os.path.join(dqn_root_dir, 'mean_sec'), dqn_mean_sec)

np.save(os.path.join(dqn_root_dir, 'max_rt'), dqn_max_rt)
np.save(os.path.join(dqn_root_dir, 'min_rt'), dqn_min_rt)
np.save(os.path.join(dqn_root_dir, 'mean_rt'), dqn_mean_rt)

Double DQN (DDQN)

pred = np.linspace(-100,100,500)
truth = np.zeros(pred.shape)
error = truth - pred
se = 0.5*error**2
ae = np.abs(error)
he = lambda delta=1: ae - delta/2 if delta == 0 else \
              np.where(ae <= np.repeat(delta, len(ae)), se, delta*(ae - delta/2))
print(np.mean(se))
print(torch.Tensor(error).pow(2).mul(0.5).mean())
1673.3466933867735
tensor(1673.3467)
print(np.mean(ae))
print(torch.Tensor(error).abs().mean())
50.1002004008016
tensor(50.1002)
print(np.mean(he(float('inf'))))
print(np.mean(he(0)))
1673.3466933867735
50.1002004008016
plt.plot(pred, se)
plt.title('Mean Squared Error (MSE/L2)')
plt.show()
plt.plot(pred, ae)
plt.title('Mean Absolute Error (MAE/L1)')
plt.show()
plot1, = plt.plot(pred, he(30))
plot2, = plt.plot(pred, he(10), ':')
plt.title('Huber Loss')
plt.legend([plot1,plot2],["Huber, δ=30", "Huber, δ=10"])
plt.show()
plot1, = plt.plot(pred, he(float('inf')), ':')
plot2, = plt.plot(pred, he(30), '--')
plot3, = plt.plot(pred, he(10), '-.')
plot4, = plt.plot(pred, he(0))
# plot4, = plt.plot(pred, ae)
plt.title('MAE, MSE and Huber Loss')
plt.legend([plot1,plot2,plot3,plot4],["MSE/L2/Huber, δ=∞", "Huber, δ=30", "Huber, δ=10", "MAE/L1/Huber, δ=0"])
plt.show()
class DDQN():
    def __init__(self, 
                 replay_buffer_fn, 
                 value_model_fn, 
                 value_optimizer_fn, 
                 value_optimizer_lr,
                 max_gradient_norm,
                 training_strategy_fn,
                 evaluation_strategy_fn,
                 n_warmup_batches,
                 update_target_every_steps):
        self.replay_buffer_fn = replay_buffer_fn
        self.value_model_fn = value_model_fn
        self.value_optimizer_fn = value_optimizer_fn
        self.value_optimizer_lr = value_optimizer_lr
        self.max_gradient_norm = max_gradient_norm
        self.training_strategy_fn = training_strategy_fn
        self.evaluation_strategy_fn = evaluation_strategy_fn
        self.n_warmup_batches = n_warmup_batches
        self.update_target_every_steps = update_target_every_steps

    def optimize_model(self, experiences):
        states, actions, rewards, next_states, is_terminals = experiences
        batch_size = len(is_terminals)
        
        # argmax_a_q_sp = self.target_model(next_states).max(1)[1]
        argmax_a_q_sp = self.online_model(next_states).max(1)[1]
        q_sp = self.target_model(next_states).detach()
        max_a_q_sp = q_sp[
            np.arange(batch_size), argmax_a_q_sp].unsqueeze(1)
        target_q_sa = rewards + (self.gamma * max_a_q_sp * (1 - is_terminals))
        q_sa = self.online_model(states).gather(1, actions)

        td_error = q_sa - target_q_sa
        value_loss = td_error.pow(2).mul(0.5).mean()
        self.value_optimizer.zero_grad()
        value_loss.backward()        
        torch.nn.utils.clip_grad_norm_(self.online_model.parameters(), 
                                       self.max_gradient_norm)
        self.value_optimizer.step()

    def interaction_step(self, state, env):
        action = self.training_strategy.select_action(self.online_model, state)
        new_state, reward, is_terminal, info = env.step(action)
        is_truncated = 'TimeLimit.truncated' in info and info['TimeLimit.truncated']
        is_failure = is_terminal and not is_truncated
        experience = (state, action, reward, new_state, float(is_failure))

        self.replay_buffer.store(experience)
        self.episode_reward[-1] += reward
        self.episode_timestep[-1] += 1
        self.episode_exploration[-1] += int(self.training_strategy.exploratory_action_taken)
        return new_state, is_terminal
    
    def update_network(self):
        for target, online in zip(self.target_model.parameters(), 
                                  self.online_model.parameters()):
            target.data.copy_(online.data)

    def train(self, make_env_fn, make_env_kargs, seed, gamma, 
              max_minutes, max_episodes, goal_mean_100_reward):
        training_start, last_debug_time = time.time(), float('-inf')

        self.checkpoint_dir = tempfile.mkdtemp()
        self.make_env_fn = make_env_fn
        self.make_env_kargs = make_env_kargs
        self.seed = seed
        self.gamma = gamma
        
        env = self.make_env_fn(**self.make_env_kargs, seed=self.seed)
        torch.manual_seed(self.seed) ; np.random.seed(self.seed) ; random.seed(self.seed)
    
        nS, nA = env.observation_space.shape[0], env.action_space.n
        self.episode_timestep = []
        self.episode_reward = []
        self.episode_seconds = []
        self.evaluation_scores = []        
        self.episode_exploration = []
        
        self.target_model = self.value_model_fn(nS, nA)
        self.online_model = self.value_model_fn(nS, nA)
        self.update_network()

        self.value_optimizer = self.value_optimizer_fn(self.online_model, 
                                                       self.value_optimizer_lr)

        self.replay_buffer = self.replay_buffer_fn()
        self.training_strategy = training_strategy_fn()
        self.evaluation_strategy = evaluation_strategy_fn() 
                    
        result = np.empty((max_episodes, 5))
        result[:] = np.nan
        training_time = 0
        for episode in range(1, max_episodes + 1):
            episode_start = time.time()
            
            state, is_terminal = env.reset(), False
            self.episode_reward.append(0.0)
            self.episode_timestep.append(0.0)
            self.episode_exploration.append(0.0)

            for step in count():
                state, is_terminal = self.interaction_step(state, env)
                
                min_samples = self.replay_buffer.batch_size * self.n_warmup_batches
                if len(self.replay_buffer) > min_samples:
                    experiences = self.replay_buffer.sample()
                    experiences = self.online_model.load(experiences)
                    self.optimize_model(experiences)
                
                if np.sum(self.episode_timestep) % self.update_target_every_steps == 0:
                    self.update_network()

                if is_terminal:
                    gc.collect()
                    break
            
            # stats
            episode_elapsed = time.time() - episode_start
            self.episode_seconds.append(episode_elapsed)
            training_time += episode_elapsed
            evaluation_score, _ = self.evaluate(self.online_model, env)
            self.save_checkpoint(episode-1, self.online_model)
            
            total_step = int(np.sum(self.episode_timestep))
            self.evaluation_scores.append(evaluation_score)
            
            mean_10_reward = np.mean(self.episode_reward[-10:])
            std_10_reward = np.std(self.episode_reward[-10:])
            mean_100_reward = np.mean(self.episode_reward[-100:])
            std_100_reward = np.std(self.episode_reward[-100:])
            mean_100_eval_score = np.mean(self.evaluation_scores[-100:])
            std_100_eval_score = np.std(self.evaluation_scores[-100:])
            lst_100_exp_rat = np.array(
                self.episode_exploration[-100:])/np.array(self.episode_timestep[-100:])
            mean_100_exp_rat = np.mean(lst_100_exp_rat)
            std_100_exp_rat = np.std(lst_100_exp_rat)
            
            wallclock_elapsed = time.time() - training_start
            result[episode-1] = total_step, mean_100_reward, \
                mean_100_eval_score, training_time, wallclock_elapsed
            
            reached_debug_time = time.time() - last_debug_time >= LEAVE_PRINT_EVERY_N_SECS
            reached_max_minutes = wallclock_elapsed >= max_minutes * 60
            reached_max_episodes = episode >= max_episodes
            reached_goal_mean_reward = mean_100_eval_score >= goal_mean_100_reward
            training_is_over = reached_max_minutes or \
                               reached_max_episodes or \
                               reached_goal_mean_reward

            elapsed_str = time.strftime("%H:%M:%S", time.gmtime(time.time() - training_start))
            debug_message = 'el {}, ep {:04}, ts {:06}, '
            debug_message += 'ar 10 {:05.1f}\u00B1{:05.1f}, '
            debug_message += '100 {:05.1f}\u00B1{:05.1f}, '
            debug_message += 'ex 100 {:02.1f}\u00B1{:02.1f}, '
            debug_message += 'ev {:05.1f}\u00B1{:05.1f}'
            debug_message = debug_message.format(
                elapsed_str, episode-1, total_step, mean_10_reward, std_10_reward, 
                mean_100_reward, std_100_reward, mean_100_exp_rat, std_100_exp_rat,
                mean_100_eval_score, std_100_eval_score)
            print(debug_message, end='\r', flush=True)
            if reached_debug_time or training_is_over:
                print(ERASE_LINE + debug_message, flush=True)
                last_debug_time = time.time()
            if training_is_over:
                if reached_max_minutes: print(u'--> reached_max_minutes \u2715')
                if reached_max_episodes: print(u'--> reached_max_episodes \u2715')
                if reached_goal_mean_reward: print(u'--> reached_goal_mean_reward \u2713')
                break
                
        final_eval_score, score_std = self.evaluate(self.online_model, env, n_episodes=100)
        wallclock_time = time.time() - training_start
        print('Training complete.')
        print('Final evaluation score {:.2f}\u00B1{:.2f} in {:.2f}s training time,'
              ' {:.2f}s wall-clock time.\n'.format(
                  final_eval_score, score_std, training_time, wallclock_time))
        env.close() ; del env
        self.get_cleaned_checkpoints()
        return result, final_eval_score, training_time, wallclock_time
    
    def evaluate(self, eval_policy_model, eval_env, n_episodes=1):
        rs = []
        for _ in range(n_episodes):
            s, d = eval_env.reset(), False
            rs.append(0)
            for _ in count():
                a = self.evaluation_strategy.select_action(eval_policy_model, s)
                s, r, d, _ = eval_env.step(a)
                rs[-1] += r
                if d: break
        return np.mean(rs), np.std(rs)

    def get_cleaned_checkpoints(self, n_checkpoints=5):
        try: 
            return self.checkpoint_paths
        except AttributeError:
            self.checkpoint_paths = {}

        paths = glob.glob(os.path.join(self.checkpoint_dir, '*.tar'))
        paths_dic = {int(path.split('.')[-2]):path for path in paths}
        last_ep = max(paths_dic.keys())
        # checkpoint_idxs = np.geomspace(1, last_ep+1, n_checkpoints, endpoint=True, dtype=np.int)-1
        checkpoint_idxs = np.linspace(1, last_ep+1, n_checkpoints, endpoint=True, dtype=np.int)-1

        for idx, path in paths_dic.items():
            if idx in checkpoint_idxs:
                self.checkpoint_paths[idx] = path
            else:
                os.unlink(path)

        return self.checkpoint_paths

    def demo_last(self, title='Fully-trained {} Agent', n_episodes=3, max_n_videos=3):
        env = self.make_env_fn(**self.make_env_kargs, monitor_mode='evaluation', render=True, record=True)

        checkpoint_paths = self.get_cleaned_checkpoints()
        last_ep = max(checkpoint_paths.keys())
        self.online_model.load_state_dict(torch.load(checkpoint_paths[last_ep]))

        self.evaluate(self.online_model, env, n_episodes=n_episodes)
        env.close()
        data = get_gif_html(env_videos=env.videos, 
                            title=title.format(self.__class__.__name__),
                            max_n_videos=max_n_videos)
        del env
        return HTML(data=data)

    def demo_progression(self, title='{} Agent progression', max_n_videos=5):
        env = self.make_env_fn(**self.make_env_kargs, monitor_mode='evaluation', render=True, record=True)

        checkpoint_paths = self.get_cleaned_checkpoints()
        for i in sorted(checkpoint_paths.keys()):
            self.online_model.load_state_dict(torch.load(checkpoint_paths[i]))
            self.evaluate(self.online_model, env, n_episodes=1)

        env.close()
        data = get_gif_html(env_videos=env.videos, 
                            title=title.format(self.__class__.__name__),
                            subtitle_eps=sorted(checkpoint_paths.keys()),
                            max_n_videos=max_n_videos)
        del env
        return HTML(data=data)

    def save_checkpoint(self, episode_idx, model):
        torch.save(model.state_dict(), 
                   os.path.join(self.checkpoint_dir, 'model.{}.tar'.format(episode_idx)))
ddqn_results = []
ddqn_agents, best_ddqn_agent_key, best_eval_score = {}, None, float('-inf')
for seed in SEEDS:
    environment_settings = {
        'env_name': 'CartPole-v1',
        'gamma': 1.00,
        'max_minutes': 20,
        'max_episodes': 10000,
        'goal_mean_100_reward': 475
    }

    value_model_fn = lambda nS, nA: FCQ(nS, nA, hidden_dims=(512,128))
    value_optimizer_fn = lambda net, lr: optim.RMSprop(net.parameters(), lr=lr)
    value_optimizer_lr = 0.0005
    max_gradient_norm = float('inf')

    training_strategy_fn = lambda: EGreedyExpStrategy(init_epsilon=1.0,  
                                                      min_epsilon=0.3, 
                                                      decay_steps=20000)
    evaluation_strategy_fn = lambda: GreedyStrategy()

    replay_buffer_fn = lambda: ReplayBuffer(max_size=50000, batch_size=64)
    n_warmup_batches = 5
    update_target_every_steps = 10
    
    env_name, gamma, max_minutes, \
    max_episodes, goal_mean_100_reward = environment_settings.values()
    agent = DDQN(replay_buffer_fn, 
                 value_model_fn, 
                 value_optimizer_fn, 
                 value_optimizer_lr,
                 max_gradient_norm,
                 training_strategy_fn,
                 evaluation_strategy_fn,
                 n_warmup_batches,
                 update_target_every_steps)

    make_env_fn, make_env_kargs = get_make_env_fn(env_name=env_name)
    result, final_eval_score, training_time, wallclock_time = agent.train(
        make_env_fn, make_env_kargs, seed, gamma, max_minutes, max_episodes, goal_mean_100_reward)
    ddqn_results.append(result)
    ddqn_agents[seed] = agent
    if final_eval_score > best_eval_score:
        best_eval_score = final_eval_score
        best_ddqn_agent_key = seed
ddqn_results = np.array(ddqn_results)
el 00:00:00, ep 0000, ts 000016, ar 10 016.0±000.0, 100 016.0±000.0, ex 100 0.4±0.0, ev 019.0±000.0
el 00:01:00, ep 0144, ts 014010, ar 10 261.8±099.7, 100 127.3±107.8, ex 100 0.3±0.1, ev 307.9±117.8
el 00:02:01, ep 0193, ts 029087, ar 10 361.6±157.5, 100 254.7±116.1, ex 100 0.2±0.1, ev 383.2±100.0
el 00:03:02, ep 0229, ts 043657, ar 10 457.4±105.5, 100 338.5±128.9, ex 100 0.2±0.0, ev 431.9±090.2
el 00:04:03, ep 0260, ts 057328, ar 10 480.5±039.5, 100 391.2±131.8, ex 100 0.2±0.0, ev 462.7±073.3
el 00:04:26, ep 0272, ts 062544, ar 10 421.6±121.3, 100 405.1±132.6, ex 100 0.2±0.0, ev 476.1±060.2
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 500.00±0.00 in 236.34s training time, 281.77s wall-clock time.

el 00:00:00, ep 0000, ts 000034, ar 10 034.0±000.0, 100 034.0±000.0, ex 100 0.6±0.0, ev 008.0±000.0
el 00:01:00, ep 0141, ts 014154, ar 10 237.8±082.6, 100 130.4±103.6, ex 100 0.3±0.1, ev 289.9±112.8
el 00:02:01, ep 0201, ts 029248, ar 10 365.2±094.4, 100 239.8±093.4, ex 100 0.2±0.1, ev 347.4±109.3
el 00:03:03, ep 0233, ts 043959, ar 10 429.6±141.5, 100 317.2±139.5, ex 100 0.2±0.0, ev 392.3±115.7
el 00:04:03, ep 0264, ts 057512, ar 10 448.0±140.4, 100 386.8±143.5, ex 100 0.2±0.0, ev 452.9±092.4
el 00:04:25, ep 0275, ts 062370, ar 10 435.8±137.2, 100 410.1±139.4, ex 100 0.2±0.0, ev 475.8±067.8
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 500.00±0.00 in 236.32s training time, 280.46s wall-clock time.

el 00:00:00, ep 0000, ts 000012, ar 10 012.0±000.0, 100 012.0±000.0, ex 100 0.6±0.0, ev 010.0±000.0
el 00:01:01, ep 0152, ts 014310, ar 10 335.6±117.5, 100 129.8±111.8, ex 100 0.3±0.1, ev 271.8±098.0
el 00:02:02, ep 0201, ts 029513, ar 10 322.0±089.6, 100 249.8±125.9, ex 100 0.2±0.1, ev 363.1±107.5
el 00:03:02, ep 0233, ts 043967, ar 10 475.4±073.8, 100 351.5±117.4, ex 100 0.2±0.0, ev 427.4±090.7
el 00:04:04, ep 0264, ts 057819, ar 10 453.7±102.4, 100 392.4±125.3, ex 100 0.2±0.0, ev 458.2±074.3
el 00:04:38, ep 0290, ts 065214, ar 10 302.2±214.1, 100 391.6±158.9, ex 100 0.2±0.0, ev 476.8±067.6
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 500.00±0.00 in 247.09s training time, 295.15s wall-clock time.

el 00:00:00, ep 0000, ts 000012, ar 10 012.0±000.0, 100 012.0±000.0, ex 100 0.6±0.0, ev 012.0±000.0
el 00:01:00, ep 0156, ts 014229, ar 10 235.7±077.3, 100 127.2±091.2, ex 100 0.3±0.1, ev 252.6±100.7
el 00:02:01, ep 0196, ts 029542, ar 10 393.0±185.7, 100 256.4±150.6, ex 100 0.2±0.1, ev 368.9±122.4
el 00:03:01, ep 0227, ts 044187, ar 10 475.2±074.4, 100 359.0±151.3, ex 100 0.2±0.0, ev 437.7±098.9
el 00:03:40, ep 0246, ts 053294, ar 10 500.0±000.0, 100 414.2±130.2, ex 100 0.2±0.0, ev 476.5±062.5
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 500.00±0.00 in 197.22s training time, 236.05s wall-clock time.

el 00:00:00, ep 0000, ts 000044, ar 10 044.0±000.0, 100 044.0±000.0, ex 100 0.6±0.0, ev 009.0±000.0
el 00:01:00, ep 0167, ts 014030, ar 10 220.7±060.6, 100 123.7±100.3, ex 100 0.3±0.1, ev 254.3±081.7
el 00:02:01, ep 0217, ts 029624, ar 10 379.2±115.2, 100 249.9±130.2, ex 100 0.2±0.1, ev 328.4±116.2
el 00:03:02, ep 0249, ts 044346, ar 10 462.3±113.1, 100 340.8±145.3, ex 100 0.2±0.0, ev 403.1±116.0
el 00:04:04, ep 0280, ts 058662, ar 10 427.4±131.1, 100 412.4±134.3, ex 100 0.2±0.0, ev 467.7±076.9
el 00:04:14, ep 0285, ts 060832, ar 10 441.4±118.4, 100 424.1±126.4, ex 100 0.2±0.0, ev 475.2±066.7
--> reached_goal_mean_reward ✓
Training complete.
Final evaluation score 500.00±0.00 in 226.86s training time, 269.07s wall-clock time.

ddqn_agents[best_ddqn_agent_key].demo_progression()

DDQN Agent progression

Episode 0

Episode 68

Episode 136

Episode 204

Episode 272

ddqn_agents[best_ddqn_agent_key].demo_last()

Fully-trained DDQN Agent

Trial 0

Trial 1

Trial 2

ddqn_max_t, ddqn_max_r, ddqn_max_s, ddqn_max_sec, ddqn_max_rt = np.max(ddqn_results, axis=0).T
ddqn_min_t, ddqn_min_r, ddqn_min_s, ddqn_min_sec, ddqn_min_rt = np.min(ddqn_results, axis=0).T
ddqn_mean_t, ddqn_mean_r, ddqn_mean_s, ddqn_mean_sec, ddqn_mean_rt = np.mean(ddqn_results, axis=0).T
ddqn_x = np.arange(np.max((len(ddqn_mean_s), len(dqn_mean_s))))
fig, axs = plt.subplots(5, 1, figsize=(15,30), sharey=False, sharex=True)

# DQN
axs[0].plot(dqn_max_r, 'b', linewidth=1)
axs[0].plot(dqn_min_r, 'b', linewidth=1)
axs[0].plot(dqn_mean_r, 'b--', label='DQN', linewidth=2)
axs[0].fill_between(dqn_x, dqn_min_r, dqn_max_r, facecolor='b', alpha=0.3)

axs[1].plot(dqn_max_s, 'b', linewidth=1)
axs[1].plot(dqn_min_s, 'b', linewidth=1)
axs[1].plot(dqn_mean_s, 'b--', label='DQN', linewidth=2)
axs[1].fill_between(dqn_x, dqn_min_s, dqn_max_s, facecolor='b', alpha=0.3)

axs[2].plot(dqn_max_t, 'b', linewidth=1)
axs[2].plot(dqn_min_t, 'b', linewidth=1)
axs[2].plot(dqn_mean_t, 'b--', label='DQN', linewidth=2)
axs[2].fill_between(dqn_x, dqn_min_t, dqn_max_t, facecolor='b', alpha=0.3)

axs[3].plot(dqn_max_sec, 'b', linewidth=1)
axs[3].plot(dqn_min_sec, 'b', linewidth=1)
axs[3].plot(dqn_mean_sec, 'b--', label='DQN', linewidth=2)
axs[3].fill_between(dqn_x, dqn_min_sec, dqn_max_sec, facecolor='b', alpha=0.3)

axs[4].plot(dqn_max_rt, 'b', linewidth=1)
axs[4].plot(dqn_min_rt, 'b', linewidth=1)
axs[4].plot(dqn_mean_rt, 'b--', label='DQN', linewidth=2)
axs[4].fill_between(dqn_x, dqn_min_rt, dqn_max_rt, facecolor='b', alpha=0.3)

# DDQN
axs[0].plot(ddqn_max_r, 'g', linewidth=1)
axs[0].plot(ddqn_min_r, 'g', linewidth=1)
axs[0].plot(ddqn_mean_r, 'g-.', label='DDQN', linewidth=2)
axs[0].fill_between(ddqn_x, ddqn_min_r, ddqn_max_r, facecolor='g', alpha=0.3)

axs[1].plot(ddqn_max_s, 'g', linewidth=1)
axs[1].plot(ddqn_min_s, 'g', linewidth=1)
axs[1].plot(ddqn_mean_s, 'g-.', label='DDQN', linewidth=2)
axs[1].fill_between(ddqn_x, ddqn_min_s, ddqn_max_s, facecolor='g', alpha=0.3)

axs[2].plot(ddqn_max_t, 'g', linewidth=1)
axs[2].plot(ddqn_min_t, 'g', linewidth=1)
axs[2].plot(ddqn_mean_t, 'g-.', label='DDQN', linewidth=2)
axs[2].fill_between(ddqn_x, ddqn_min_t, ddqn_max_t, facecolor='g', alpha=0.3)

axs[3].plot(ddqn_max_sec, 'g', linewidth=1)
axs[3].plot(ddqn_min_sec, 'g', linewidth=1)
axs[3].plot(ddqn_mean_sec, 'g-.', label='DDQN', linewidth=2)
axs[3].fill_between(ddqn_x, ddqn_min_sec, ddqn_max_sec, facecolor='g', alpha=0.3)

axs[4].plot(ddqn_max_rt, 'g', linewidth=1)
axs[4].plot(ddqn_min_rt, 'g', linewidth=1)
axs[4].plot(ddqn_mean_rt, 'g-.', label='DDQN', linewidth=2)
axs[4].fill_between(ddqn_x, ddqn_min_rt, ddqn_max_rt, facecolor='g', alpha=0.3)

# ALL
axs[0].set_title('Moving Avg Reward (Training)')
axs[1].set_title('Moving Avg Reward (Evaluation)')
axs[2].set_title('Total Steps')
axs[3].set_title('Training Time')
axs[4].set_title('Wall-clock Time')
plt.xlabel('Episodes')
axs[0].legend(loc='upper left')
plt.show()
ddqn_root_dir = os.path.join(RESULTS_DIR, 'ddqn')
not os.path.exists(ddqn_root_dir) and os.makedirs(ddqn_root_dir)

np.save(os.path.join(ddqn_root_dir, 'x'), ddqn_x)

np.save(os.path.join(ddqn_root_dir, 'max_r'), ddqn_max_r)
np.save(os.path.join(ddqn_root_dir, 'min_r'), ddqn_min_r)
np.save(os.path.join(ddqn_root_dir, 'mean_r'), ddqn_mean_r)

np.save(os.path.join(ddqn_root_dir, 'max_s'), ddqn_max_s)
np.save(os.path.join(ddqn_root_dir, 'min_s'), ddqn_min_s )
np.save(os.path.join(ddqn_root_dir, 'mean_s'), ddqn_mean_s)

np.save(os.path.join(ddqn_root_dir, 'max_t'), ddqn_max_t)
np.save(os.path.join(ddqn_root_dir, 'min_t'), ddqn_min_t)
np.save(os.path.join(ddqn_root_dir, 'mean_t'), ddqn_mean_t)

np.save(os.path.join(ddqn_root_dir, 'max_sec'), ddqn_max_sec)
np.save(os.path.join(ddqn_root_dir, 'min_sec'), ddqn_min_sec)
np.save(os.path.join(ddqn_root_dir, 'mean_sec'), ddqn_mean_sec)

np.save(os.path.join(ddqn_root_dir, 'max_rt'), ddqn_max_rt)
np.save(os.path.join(ddqn_root_dir, 'min_rt'), ddqn_min_rt)
np.save(os.path.join(ddqn_root_dir, 'mean_rt'), ddqn_mean_rt)
env = make_env_fn(**make_env_kargs, seed=123, monitor_mode='evaluation')
state = env.reset()
env.close()
del env
print(state)
[ 0.02078762 -0.01301236 -0.0209893  -0.03935255]
q_values = ddqn_agents[best_ddqn_agent_key].online_model(state).detach().cpu().numpy()[0]
print(q_values)
[2134438.2 2138762.8]
q_s = q_values
v_s = q_values.mean()
a_s = q_values - q_values.mean()
plt.bar(('Left (idx=0)','Right (idx=1)'), q_s)
plt.xlabel('Action')
plt.ylabel('Estimate')
plt.title("Action-value function, Q(" + str(np.round(state,2)) + ")")
plt.show()
plt.bar('s='+str(np.round(state,2)), v_s, width=0.1)
plt.xlabel('State')
plt.ylabel('Estimate')
plt.title("State-value function, V("+str(np.round(state,2))+")")
plt.show()
plt.bar(('Left (idx=0)','Right (idx=1)'), a_s)
plt.xlabel('Action')
plt.ylabel('Estimate')
plt.title("Advantage function, (" + str(np.round(state,2)) + ")")
plt.show()
env = make_env_fn(**make_env_kargs, seed=123, monitor_mode='evaluation')

states = []
for agent in ddqn_agents.values():
    for episode in range(100):
        state, done = env.reset(), False
        while not done:
            states.append(state)
            action = agent.evaluation_strategy.select_action(agent.online_model, state)
            state, _, done, _ = env.step(action)
env.close()
del env

x = np.array(states)[:,0]
xd = np.array(states)[:,1]
a = np.array(states)[:,2]
ad = np.array(states)[:,3]
parts = plt.violinplot((x, xd, a, ad), 
                       vert=False, showmeans=False, showmedians=False, showextrema=False)

colors = ['red','green','yellow','blue']
for i, pc in enumerate(parts['bodies']):
    pc.set_facecolor(colors[i])
    pc.set_edgecolor(colors[i])
    pc.set_alpha(0.5)

plt.yticks(range(1,5), ["cart position", "cart velocity", "pole angle", "pole velocity"])
plt.yticks(rotation=45)
plt.title('Range of state-variable values for ' + str(
    ddqn_agents[best_ddqn_agent_key].__class__.__name__))

plt.show()